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I. Introduction

We consider a discrete time single server queueing system that is fed by N indepen-
dent input streams (Fig.1). The service time, T, is constant and equal to one, which is the
distance between successive arrival points. The first in - first out policy is adopted and

the buffer size 1s infinite.

When successive arrivais in each input stream are independent, the above queueing
system has been studied, [1], and the mean time, Dy, that a customer spends in the system

was then found to be given by the following expression.

N N
X oXo o
n=1 m>n

N
(I“Z an)' zan

n=1 n=1

where o, is the probability of an arrival at the input of the queue, and corresponds to the
mean arrival rate of the Bemmoulli process that describes the arrival streams.
If the arrival process is a first order ergodic Markov chain with state space S = {0,

1}, where 1 corresponds to an arrival and O to the absence of such an event, then the

average time, Dy, that a customer spends in the system is given by the expression below,

21, 3]
[ NN Yoo Ym ]
Y Yo, o l+ + )
n=1 | ! _.{n 1 I
Dy =1 +— )
M N N
(=3 u). Fu,
L n-1 n=| j

where v = P(1/1) - P (1.0) and where « 15 the arrival rate given by the expression
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P(1/0)
1 ~Y, '

n

P( /) denotes conditional probability.

In this paper, it is assume that each input stream is described by a finite-state Mar-
kov chain. The cardinality of the state space of the Markov chain associated with the i
stream 1s denoted by M,. The arrival process of each input stream corresponds then to a
mapping from a finite-state Markov chain onto the set {0,1}, where | represents a single
arrival and where O represents no arrival. In this case, the average time that a customer

spends in the system is obtained from the solution of M xM,x - - - xMy linear equations.

Clearly, the Markov arrival system described in [2] is a special case of the general
system considered in this paper. In [2], the underlying Markov chain has two states only,
and actually coincides with the arrival process. The closed form solution obtained in [2],
for the average time that a customer spends in the system, does not extend to the case
where multi-state Markov chains are present. The two state Markov model gives rise to a
second order equation, whose roots are used in the derivation of the closed form solution.
This procedure does not extend to a larger state space Markov model, since then expres-

sions for the roots of high order equations would be needed.

The queueing system with Bernoulli arrivals, is also a special case of the system
considered in this paper. In that case, the arrival process coincides with the underlying
Markov process and the state transition probabilities are properly selected. Then, Dy can

be derived from the solution of 4 linear equations.

The system considered here has several applications. For example, the single server
may correspond to some central node which accepts and processes packets originating

from several random-access communication systems. Each input stream represents then
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the output process from a random-access communication system; that is, the process of
the successfully transmitted within the latter system packets. Then, the per stream Ber-
noulli model is unrealistic, and the two-state Markov model can be inefficient, [4]. On
the other hand, a three-state Markov model per input stream may represent an efficient
approximation and may be intuitively pleasing. For example, in synchronous packet
random-access systems, the three states may correspond to the idle versus success versus
collision channel states per slot. Each input stream is then governed by this three-state
process, whose characteristics are induced by the deployed random-access algorithm.
The above three-state process is not necessarily Markov, but can be closely approximated

by a Markov such process, especially in the presence of heavy traffic, [4].

II. The eeneral queueing system

The general configuration of the problem that will be described in this section
appears in Fig 1. The system consists of N input streams which feed a single server. The

server has an infinite capacity buffer.

The arrival processes {aij}jzo, i=1,2, ---, N, are assumed to be synchronized
discrete time processes, and at most one arrival can occur in each input line per unit time.
The time separation between successive possible arrival points is constant and equal to
one. The arrival processes {aij Yjz0o1=1,2, -+, N, may represent the output processes
of multi-user random access slotted communication networks, where the arrival points
coincide then with the ends of slots. It is obvious that in the latter system. the condition

of having at most one packet arrival per input stream and per unit time is satisfied.
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The first in - first out (FIFO) policy is adopted and the service time is assumed to be
constant and equal to the distance separation of successive arrival points. More than one
arnivals (from different input streams) that occur at the same arrival point are served in a
randomly chosen order. In the packet communication system, the service time policy

implies that arriving and departing packets have the same length.
Let {xf}jzo denote a discrete time ergodic Markov process associated with the i
: . . i 1 M, .
input stream, with finite state space S ={o;, --- o; '}. Letalso a; be a stationary map-
ping rule from the set S; onto the set {0, 1}, where 1 corresponds to an arrival and 0 to
the absence of such an event. Then the arrival process of the i input stream is
i - j - 0 N
{ai }jg() = {3i(xi)}j20 ={a,(x;), g (x; ), }
From the description of the arrival process it is implied that successive arrivals from the

same input stream are not independent, but they are governed by an underlying finite

state Markov chain, {xij}jzo , and a stationary mapping rule a;.

In this system, it is assumed that the processes {xf}jzo, i=1,2, --- N, are mutu-
ally independent and thus the arrival processes {af}jzo, 1=1,2, -, N, are also
. i 0 . . .
independent. If {bj}jzo= {b", bl, -+ } is the process that describes the total arrivals

occuring at a single arrival point, then

. N .
V=% ax) , j=012 - (2)
1=1

and b €{0,1,2, - , N}

Referring to the example of the output process of 4 multi-user random access com-

munication network, we may define {)'(ij}j20 to be the process that describes the state of

the channel at the end of 4 slot. Let us consider a ternary channel state space




TRETTe TN W ORW

L
1)
L)
£
: Sl = {Oa 1! 2}

® where, 0, 1 and 2, respectively, denote that O, 1, or more than 1 packets attempted packet

14
X transmission in a single slot. Since a packet appears in the output process only if it is the
; only one transmitted within the corresponding slot, the arrival process {af}jzo can be
| @

X clearly described via the mapping

r : Loif %=1

a(ij) = .

K (AN : ~J

® 0 if /=02
:. The process {if}jzo is controlled by the deployed random-access algorithm, and is
)

! generally non-Markov. However, this process can be approximated by a Markov process
L
“ {xij}j20 which has the same state space as {iij}jzo and is ergodic within the stability
S region of the random-access algorithm. Simulation results, {4], have shown that, for at
‘ least a class of random-access algorithms, the three-state Markov model provides a good
L g j
N approximation of the process {X; }so-
¢
L)
"
) P [II. Analysis of the queueing system
L
This section is devoted to the analysis of the system described in the previous sec-
& tion. The main result of the analysis is the derivation of the linear equations whose solu-
tion give the mean number of packets in the system. This result, in conjunction with
Little’s formula, provide the mean time that a packet spends in the system.

. Let m (k) and p/(k, ), k,j€ S'. denote the steady state and the transition probabilities
- of the ergodic Markov chain, {xf}l?o, i=1,2, -+ ,N. Letalsop"(j;y) denote the joint
> probability that there are j packets in the system at the n™ arrival point (arrivals at that
L)

" @ point are included) and the states of the Markov chains are y|, y.. -+ ,yy, where
Y =1y, .ya c 0 .yy). The vector y describes the state of a new ergodic Markov chain that
6
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1s generated by the N independent Markov chains described before, with steady state and

o
' transition probabilities w(y) and p(X,y) respectively, and with state space
S=8'x$*x - xS\
o The operation of the system can be descibed by an N + 1 dimensional (infinite state
space) Markov chain imbedded at the arrival points, with state space T = ( 0, 1, 2,
-++)x S and state probabilities given by the following recursive equations
® 1 N
PGy = P (4l - Yax):x) pX,y) . j=N+1
XeS i=1
or 3)
1€ .
j+1 | .
. — — n— —_ .
PG:n=% T p k:0pEN+ T P00 p K, 0<j<N
k=1 XeFu,, xeF
where
_ N
Fo={x=(x;%y, -+ xy) € S: Y alx)=v} (4)
i=1
There are totally M;xM,x - -- xMy equations given by (3) for a fixed j and all y e S,

where M, is the cardinality of S, i=1,2, ---,N.
The original assumption concerning the ergodicity of the Markov chains associated
with the input streams implies the ergodicity of the arrival processes {ai’}jzo, 1=1,2,

-+ -, N. The latter together with the well known condition, [3],

™ =z

> m(x; s ax)=1) < 1 (5)
x, € S'

o

imply that the Markov chain described in (3) is ergodic and there exist steady state
(cquilibrium) probabilities. Thus, we can consider the limit of the equations in (3) as n

approaches infinity and obtain similar equations for the steady state probabilitics.




......

L
;
¢ By considering the steady state probabilities given by (3) and manipulating the
L
¥ resulting equations, as i1t is shown in Appendix A, we obtain the following system of
W
linear equations
LY.
0 N vel _ .
Pz:y)=% ¥ z [P@:X0)+@EDpO:0]pky) , yeS 6)
; v=0 X¢F,
where P(z;y) is the generating function of the steady state distribution of the N+1
le dimensional imbedded Markov chain, given in Appendix A.
From the independence of the Markov chains associated with the input streams and
the state description of the imbedded N+1 dimensional Markov chain, it is obvious that
1 |
: N N
"‘ TC(;) = 1—[ Tci(xi) s P(Z )’j = H pi(xi’ yl) (7)
) i=1 i=1
& N
1o PO X)=po I mi(x) (7b)
i=1
: [f P(z) is the generating function of the distribution of the number of packets in the sys-
i: tem, then
L)
o
P)=% pi)Z2=3 ¥ p(:9Z=F Pz;y) (82)
j=0 =0 yeS yes
. and
({
: Pz)= ¥ P(z;
: () }:_ (z;y) (8b)
yeSs
p where P(z;y), y €S, can be derived by differentiating (6) and are given by
‘ ‘o.’ N
g I -2 —
- Pz:y)=Y ¥ [(v-l)z\ “[P(z:X)+ (z-Dp(0: x)] +
. v=0 e F,
° + ! lPl(z VX)) +p0s 3(')]] p(x.y) 9
¢ fory e S.
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Since Pl(l) is the average number of packets in the system, Q, from (8b) we have that

, ye S
: P(1:y), y €S, are in fact the solutions of the following M x --- xMy dimensional
B h
O linear system of equations, which are obtained from (9) by sctting z=1 :
®
1 . N . -
+ P(l;y)=Y X [(\’—I)P(1 ;x)+P(1 :7)+P(0;?)] p(x,y) , yeS (11)
v=0 X¢F,
jo where
X N
2 P(1;%) = n(x) = [T m(x) (12)
» l=1
'r . . . — - .
The M;x --- My linear equations with respect to y & S that appear in (11) are
linearly dependent. This is usually the case when the equations have been derived from
'. the state transition description of a Markov chain. By following the procedure that is
\
. shown in Appendix B, we obtain an additional linear equation with respect to
; P'(I 1Y) YE S, which is linearly independent from those in (11) and is given by
i o N '
; > [2(\'-1)P (1 ;30+(V-1)(V-2)P(1;?)+2(V—1)p(0:ﬂ} =0 (13
v=0 xeF,
In appendix B we also calculate the steady state probability that there is no packet
;“ in the system, denoied by p,. As it was expected it was found that
N
pozl‘z Z Kl(xi:al(xi):l) (14)
i=l x,e8§
n f Vv
£ By substituting (7b), (12) and (14) into (11) and (13) and solving the M,x - - XMy
.
. dimensional linear system of equations that consists of (13) and any Mx -+ xMy — 1
“, equations taken from (11), we compute P(1:X) , Xe&S. Then. the average number of
: packets in the system can be computed by (10).
. 9
e
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The average time, D, that a packet spends in the system can be obtained by using

Little’s formula and it i1s given by

D= Q

N -
Y ¥ mxakx)=1) (15)
i=l x ¢S

The denominator in the above expression corresponds to the total input traffic to the

queueing system.

[V. Conclusions

The main result of this paper is a method to calculate the mean time that a customer
spends in the system, for a queueing system with many input streams and artivals that
depend on the state of arbitrary Markov chains associated with the input streams. That
result can be obtained by solving M x - -+ xMy linear equations, where M; is the cardi-

nality of the Markov chain associated with the i input stream.

As a possible application. it has been demonstrated how the queueing system under
consiceration can approximate a queueing system fed by the output processes of indepen-

dent multi-user random access communication networks.
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D Appendix A

In this section we derive the linear equations that are given by (6). Wc write the

steady staty probabilities (under ergodicity) by considering the limit of (3) as n—eo and

o obtain
_. N
; PG:y) = X p(+l=X ax) s Yp(SY) , j2N+I
XeS i=1
® j+1
i pG:y) =Y X pk;0pEY+ Y pO;XpXYy) ,0<j<N
3 k=1 XeF.,, XeF

If P(z ;y) is the z-transform of the joint probability distribution that there are j packets in

" the system and the Markov chain is in state y, defined by
Ca
X Pz;9)=3p(;: N2 =3 p}; N2
2 =0 =0
i K4 then, from (A ) we obtain
:
. N e N .
3 Pz;y)=Y p(: 92+ ¥ ¥ p(+l-Y a(x);X)pX,y) 7
R j=0 j=N+1 xe§ i=1

® N N = .
3 =Xp(:y2+L T X pl+l-viNpE,y7
Py j=0 v=0 j=N+l XeF,
: . X - k _v-1
i =Xp:97+X T X pk;0pE N2
a i=0 v=0 k=N+2-v x¢F,
y N N N ;
: =Xpi:0Z2+E ¥ 2| ¥ pk:¥NpX Nz
’ j=0 v=0 TeF, | k=N+2-v
o N N r N+l-v
" =Y (i T v-U b, X T
" =3 p:yz+3Y Y z [(Pzix)- 3 P(I\,X)Z}p(x.y)
y 3=0 v=0 TeF, L k=0
b
] @

. 13
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A ° =Y pj:n2+Y Y 2 P(z ;) X)p(x.y)

" )=0 v=0 {¢F,

- N N N+l-v
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“ Appendix B
e
> In this section we derive the additional equation that is shown in (13). We start by
.l
N adding all the equations that are given by (9) and by using (8b) we obtain
: .
B ’ ) v-2 5 = = vl n = L=
Poy=Y Y |(v=hz T [P:xX)+(z-D)p0:x)]+2  [P(z:X)+p(0:x)]
v=0 R¢F,
By adding
e . N .
. zP(z)-23% 3 P(z;x)=0
. v=0 xeF,
: in the first equation and rearranging we obtain
¢ . A(z)
P(z)= (B1)
1-z
where
« K4 > v-2 - R I - P
“ Alz)=3 X |(v=Dz "[Pz:X)+(z-1)pO;x)|+2z " [P(z:x)+p0;x)]-2zP(z:X)
:: v=0 Y& F,
-~ .
b Since, P (1) is the average number of packets in the system, which is finite if (3) holds,
® and since -z = 0 for z=1, we compute P'(l) by applying L'Hospital's rule to (B1) ; thus
. P ) dA(z)/dz dA@)dz | -
J zy |, _,=— ,::"f’Z'Z,: (-—)
: 7=1 d(1~z)/dz 2=1 7=1
.< ' From condition (B2) and by using (8,) we obtain (13).
" To calculate the steady state probability of having no puacket in the system we
: proceed as before. We start by adding the equations given by (6) and by using (8 ) we
o B J
obtain
j N
¢ P(z)= 3% 2! [P(z :X) + (z=1) p(O:X)]
® v=0 X¢F,
.
2 By adding
L~
\
w
2 15
de
“

T A7 S 2o T o e B B o ol Lol Tt gl T L L o LU o n DA W 3 L4 (e . R A 1 e v, o Tt WTRRET T bty
inhthe PR oY, . .al, .. y Tp Y ,f.’- ) ".m&"" A 5390 0 ¢ AL LOONDGHODA T ]




Nwgwew

. -t

N
;! PP()-z2 Y X P(z.:x)=0
# v=0 XeF,
]

',: in the previous equation and rearranging we obtain

B B(z)
. o p(Z)—

, 1-2
where

(B3)

) N
B(z)=3Y 3 (2""'=2) [Pz ; X) + (z=1) p(0 ; )]

v=0 Xe¢F,

N Since P(1)=1<eand 1 - z = 0 for z = 1, we compute P (1) by applying L 'Hospital’s

H rule to (B3); thus

. B(z)/d
~ 1=P@) |, _ B@idz | ,.; =—dB(@)dz | ,_, (B4)
.  d(1-z)/dz ’

d @ From condition (B4) and by using (7,) we have
. N N

N
pp=1-2 X vi=1-% ¥ v[]mx)

) v=0 XeF, v=0 xe¢F, i=l

The previous expression after some manipulations results in (14).
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School of Engineering and Applied Science t\ X
The University of Virginia's School of Engineering and Applied Science has an undergraduate y }'
enroliment of approximately 1,500 students with a graduate enrollment of approximately 560. There i
are 150 faculty members, a majority of whom caonduct research in addition to teaching. ‘: ':
Research is a vital part of the educational program and interests parallel academic specialties. S 2:
These range from the classical engineering disciplines of Chemical, Civil, Electrical, and Mechanical gﬁ' N
and Aerospace to newer, more specialized fields of Biomedical Engineering, Systems Engineering, :u.
Materials Science, Nuclear Engineering and Engineering Physics, Applied Mathematics and Computer iy
Science. Within these disciplines there are wel! equipped laboratories for conducting highly specialized -
research. All departments offer the doctorate; Biomedical and Materials Science grant only graduate '5
degrees. In addition, courses in the humanities are offered within the School. -
The University of Virginia (which includes approximately 2,000 faculty and a total of full-time :'.:4,"
student enroliment of about 16,400), also offers professional degrees under the schools of Architecture, e
Law. Medicine, Nursing, Commerce, Business Administration, and Education. In addition, the College .
ot Arts and Sciences houses departments of Mathematics, Physics, Chemistry and others relevant XX
to the engineering research program. The School of Engineering and Applied Science is an integral _..Q'_
part of this University community which provides opportunities for interdisciplinary work in pursuit .'.‘;s.
of the basic goals of education, research, and public service. :.r:
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